
Cost Models Control Flow Refinement and Simulation

Abstract Machines

Thomas Sewell
UNSW

Term 3 2024

1



Cost Models Control Flow Refinement and Simulation

Big O

We all know that MergeSort has O(n log n) time complexity,
and that BubbleSort has O(n2) time complexity, but what does
that actually mean?

Big O Notation

Given functions f , g : R → R, f ∈ O(g) if and only if there exists
a value x0 ∈ R and a coefficient m such that:

∀x > x0. f (x) ≤ m · g(x)

When analysing algorithms, we don’t usually time how long they
take to run on a real machine.

2



Cost Models Control Flow Refinement and Simulation

Big O

We all know that MergeSort has O(n log n) time complexity,
and that BubbleSort has O(n2) time complexity, but what does
that actually mean?

Big O Notation

Given functions f , g : R → R, f ∈ O(g) if and only if there exists
a value x0 ∈ R and a coefficient m such that:

∀x > x0. f (x) ≤ m · g(x)

When analysing algorithms, we don’t usually time how long they
take to run on a real machine.

3



Cost Models Control Flow Refinement and Simulation

Big O

Q: How would you derive the complexity of this mergesort?

mergesort([]) = []

f (0) = c1

mergesort(xs) =

f (n) =

let (ys, zs) = partition xs;

c2 ∗ n +

ys ′ = mergesort ys;

f (n/2) +

zs ′ = mergesort zs

f (n/2) +

in merge ys ′ zs ′

c3 ∗ n

A: Define a cost function f , then find its closed form.

Q: Is there a formal connection between mergesort and f , or did
we just pull f out of thin air?

A: Well, um.

4



Cost Models Control Flow Refinement and Simulation

Big O

Q: How would you derive the complexity of this mergesort?

mergesort([]) = [] f (0) = c1
mergesort(xs) = f (n) =

let (ys, zs) = partition xs; c2 ∗ n +
ys ′ = mergesort ys; f (n/2) +
zs ′ = mergesort zs f (n/2) +

in merge ys ′ zs ′ c3 ∗ n

A: Define a cost function f , then find its closed form.

Q: Is there a formal connection between mergesort and f , or did
we just pull f out of thin air?

A: Well, um.

5



Cost Models Control Flow Refinement and Simulation

Big O

Q: How would you derive the complexity of this mergesort?

mergesort([]) = [] f (0) = c1
mergesort(xs) = f (n) =

let (ys, zs) = partition xs; c2 ∗ n +
ys ′ = mergesort ys; f (n/2) +
zs ′ = mergesort zs f (n/2) +

in merge ys ′ zs ′ c3 ∗ n

A: Define a cost function f , then find its closed form.

Q: Is there a formal connection between mergesort and f , or did
we just pull f out of thin air?

A: Well, um.

6



Cost Models Control Flow Refinement and Simulation

Big O

Q: How would you derive the complexity of this mergesort?

mergesort([]) = [] f (0) = c1
mergesort(xs) = f (n) =

let (ys, zs) = partition xs; c2 ∗ n +
ys ′ = mergesort ys; f (n/2) +
zs ′ = mergesort zs f (n/2) +

in merge ys ′ zs ′ c3 ∗ n

A: Define a cost function f , then find its closed form.

Q: Is there a formal connection between mergesort and f , or did
we just pull f out of thin air?

A: Well, um.

7



Cost Models Control Flow Refinement and Simulation

Cost Models

A cost model is a mathematical model that measures the cost of
executing a program.
There are denotational cost models, that assign a cost directly to
syntax:

[[·]] : Program → Cost

In this course, we will focus on operational cost models.

Operational Cost Models

First, we define a program-evaluating abstract machine. We
determine the time cost by counting the number of steps it takes.

8



Cost Models Control Flow Refinement and Simulation

Abstract Machines

Abstract Machines

An abstract machine consists of:

1 A set of states Σ,

2 A set of initial states I ⊆ Σ,

3 A set of final states F ⊆ Σ, and

4 A transition relation 7→ ⊆ Σ× Σ.

We’ve seen this before in structured operational (or small-step)
semantics.

9



Cost Models Control Flow Refinement and Simulation

The M Machine
Is just our usual small-step rules:

e1 7→M e′1
(Plus e1 e2) 7→M (Plus e′1 e2)

· · ·
e1 7→M e′1

(If e1 e2 e3) 7→M (If e′1 e2 e3)

(If (Lit True) e2 e3) 7→M e2 (If (Lit False) e2 e3) 7→M e3

e1 7→M e′1
(Apply e1 e2) 7→M (Apply e′1 e2)

e2 7→M e′2
(Apply (Recfun (f .x . e)) e2) 7→M (Apply (Recfun (f .x . e)) e′2)

v ∈ F

(Apply (Recfun (f .x . e)) v) 7→M e[x := v , f := (Recfun (f .x . e))]

The M Machine is unsuitable as a basis for a cost model. Why?

10



Cost Models Control Flow Refinement and Simulation

Performance
One step in our machine should always only be O(1) in our
language implementation. Otherwise, counting steps will not get
an accurate description of the time cost.

This makes for two potential problems:
1 Substitution occurs in function application, which is

potentially O(n) time.

2 Control Flow is not explicit – which subexpression to reduce
is found by recursively descending the abstract syntax tree
each time.

eval (Num n) = n
eval e = eval (oneStep e)

oneStep (Plus (Num n) (Num m)) = Num (n +m)
oneStep (Plus (Num n) e2) = Plus (Num n) (oneStep e2)
oneStep (Plus e1 e2) = Plus (oneStep e1) e2
. . .

11



Cost Models Control Flow Refinement and Simulation

Performance
One step in our machine should always only be O(1) in our
language implementation. Otherwise, counting steps will not get
an accurate description of the time cost.

This makes for two potential problems:
1 Substitution occurs in function application, which is

potentially O(n) time.
2 Control Flow is not explicit – which subexpression to reduce

is found by recursively descending the abstract syntax tree
each time.

eval (Num n) = n
eval e = eval (oneStep e)

oneStep (Plus (Num n) (Num m)) = Num (n +m)
oneStep (Plus (Num n) e2) = Plus (Num n) (oneStep e2)
oneStep (Plus e1 e2) = Plus (oneStep e1) e2
. . .

12



Cost Models Control Flow Refinement and Simulation

The C Machine
We want to define a machine where all the rules are axioms, so
there can be no recursive descent into subexpressions. How is
recursion typically implemented?

Stacks!

◦ Stack

f Frame s Stack

f ▷ s Stack

Key Idea: States will consist of a current expression to evaluate
and a stack of computational contexts that situate it in the overall
computation. An example stack would be:

(Plus 3 □) ▷ (Times □ (Num 2)) ▷ ◦
This represents the computational context:

(Times (Plus 3 □) (Num 2))

13



Cost Models Control Flow Refinement and Simulation

The C Machine
We want to define a machine where all the rules are axioms, so
there can be no recursive descent into subexpressions. How is
recursion typically implemented?

Stacks!

◦ Stack

f Frame s Stack

f ▷ s Stack

Key Idea: States will consist of a current expression to evaluate
and a stack of computational contexts that situate it in the overall
computation. An example stack would be:

(Plus 3 □) ▷ (Times □ (Num 2)) ▷ ◦
This represents the computational context:

(Times (Plus 3 □) (Num 2))

14



Cost Models Control Flow Refinement and Simulation

The C Machine

Our states will consist of two modes:

1 Evaluate the current expression within stack s, written s ≻ e.

2 Return a value v (either a function, integer, or boolean) back
into the context in s, written s ≺ v .

Initial states start evaluation with an empty stack, i.e. ◦ ≻ e. Final
states return a value to the empty stack, i.e. ◦ ≺ v .

Stack frames are expressions with holes or values in them:

e2 Expr

(Plus □ e2) Frame

v1 Value

(Plus v1 □) Frame

· · ·

15



Cost Models Control Flow Refinement and Simulation

The C Machine

Our states will consist of two modes:

1 Evaluate the current expression within stack s, written s ≻ e.

2 Return a value v (either a function, integer, or boolean) back
into the context in s, written s ≺ v .

Initial states start evaluation with an empty stack, i.e. ◦ ≻ e. Final
states return a value to the empty stack, i.e. ◦ ≺ v .

Stack frames are expressions with holes or values in them:

e2 Expr

(Plus □ e2) Frame

v1 Value

(Plus v1 □) Frame

· · ·

16



Cost Models Control Flow Refinement and Simulation

The C Machine

Our states will consist of two modes:

1 Evaluate the current expression within stack s, written s ≻ e.

2 Return a value v (either a function, integer, or boolean) back
into the context in s, written s ≺ v .

Initial states start evaluation with an empty stack, i.e. ◦ ≻ e. Final
states return a value to the empty stack, i.e. ◦ ≺ v .

Stack frames are expressions with holes or values in them:

e2 Expr

(Plus □ e2) Frame

v1 Value

(Plus v1 □) Frame

· · ·

17



Cost Models Control Flow Refinement and Simulation

Evaluating
There are three axioms about Plus now:

When evaluating a Plus expression, first evaluate the LHS:

s ≻ (Plus e1 e2) 7→C (Plus □ e2) ▷ s ≻ e1

Once the LHS is evaluated, switch to the RHS:

(Plus □ e2) ▷ s ≺ v1 7→C (Plus v1 □) ▷ s ≻ e2

Once the RHS is evaluated, return the sum:

(Plus v1 □) ▷ s ≺ v2 7→C s ≺ v1 + v2

We also have a single rule about Num that just returns the value:

s ≻ (Num n) 7→C s ≺ n

18



Cost Models Control Flow Refinement and Simulation

Evaluating
There are three axioms about Plus now:

When evaluating a Plus expression, first evaluate the LHS:

s ≻ (Plus e1 e2) 7→C (Plus □ e2) ▷ s ≻ e1

Once the LHS is evaluated, switch to the RHS:

(Plus □ e2) ▷ s ≺ v1 7→C (Plus v1 □) ▷ s ≻ e2

Once the RHS is evaluated, return the sum:

(Plus v1 □) ▷ s ≺ v2 7→C s ≺ v1 + v2

We also have a single rule about Num that just returns the value:

s ≻ (Num n) 7→C s ≺ n

19



Cost Models Control Flow Refinement and Simulation

Evaluating
There are three axioms about Plus now:

When evaluating a Plus expression, first evaluate the LHS:

s ≻ (Plus e1 e2) 7→C (Plus □ e2) ▷ s ≻ e1

Once the LHS is evaluated, switch to the RHS:

(Plus □ e2) ▷ s ≺ v1 7→C (Plus v1 □) ▷ s ≻ e2

Once the RHS is evaluated, return the sum:

(Plus v1 □) ▷ s ≺ v2 7→C s ≺ v1 + v2

We also have a single rule about Num that just returns the value:

s ≻ (Num n) 7→C s ≺ n

20



Cost Models Control Flow Refinement and Simulation

Evaluating
There are three axioms about Plus now:

When evaluating a Plus expression, first evaluate the LHS:

s ≻ (Plus e1 e2) 7→C (Plus □ e2) ▷ s ≻ e1

Once the LHS is evaluated, switch to the RHS:

(Plus □ e2) ▷ s ≺ v1 7→C (Plus v1 □) ▷ s ≻ e2

Once the RHS is evaluated, return the sum:

(Plus v1 □) ▷ s ≺ v2 7→C s ≺ v1 + v2

We also have a single rule about Num that just returns the value:

s ≻ (Num n) 7→C s ≺ n

21



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

22



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

23



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

24



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

25



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

26



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

27



Cost Models Control Flow Refinement and Simulation

Example

◦ ≻ (Plus (Plus (Num 2) (Num 3)) (Num 4))

7→C (Plus □ (Num 4)) ▷ ◦ ≻ (Plus (Num 2) (Num 3))

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 2)

7→C (Plus □ (Num 3)) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 2

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≻ (Num 3)

7→C (Plus 2 □) ▷ (Plus □ (Num 4)) ▷ ◦ ≺ 3

7→C (Plus □ (Num 4)) ▷ ◦ ≺ 5

7→C (Plus 5 □) ▷ ◦ ≻ (Num 4)

7→C (Plus 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9

28



Cost Models Control Flow Refinement and Simulation

Other Rules

We have similar rules for the other operators and for booleans. For
If:

s ≻ (If e1 e2 e3) 7→C (If □ e2 e3) ▷ s ≻ e1

(If □ e2 e3) ▷ s ≺ True 7→C s ≻ e2

(If □ e2 e3) ▷ s ≺ False 7→C s ≻ e3

29



Cost Models Control Flow Refinement and Simulation

Other Rules

We have similar rules for the other operators and for booleans. For
If:

s ≻ (If e1 e2 e3) 7→C (If □ e2 e3) ▷ s ≻ e1

(If □ e2 e3) ▷ s ≺ True 7→C s ≻ e2

(If □ e2 e3) ▷ s ≺ False 7→C s ≻ e3

30



Cost Models Control Flow Refinement and Simulation

Functions

Recfun (here abbreviated to Fun) evaluates to a function value:

s ≻ (Fun (f .x . e)) 7→C s ≺ ⟨⟨f .x . e⟩⟩

Function application is then handled similarly to Plus.

s ≻ (Apply e1 e2) 7→C (Apply □ e2) ▷ s ≻ e1

(Apply □ e2) ▷ s ≺ ⟨⟨f .x . e⟩⟩ 7→C (Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≻ e2

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≺ v 7→C s ≻ e[x := v , f := (Fun (f .x .e))]

We are still using substitution for now.

31



Cost Models Control Flow Refinement and Simulation

Functions

Recfun (here abbreviated to Fun) evaluates to a function value:

s ≻ (Fun (f .x . e)) 7→C s ≺ ⟨⟨f .x . e⟩⟩

Function application is then handled similarly to Plus.

s ≻ (Apply e1 e2) 7→C (Apply □ e2) ▷ s ≻ e1

(Apply □ e2) ▷ s ≺ ⟨⟨f .x . e⟩⟩ 7→C (Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≻ e2

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≺ v 7→C s ≻ e[x := v , f := (Fun (f .x .e))]

We are still using substitution for now.

32



Cost Models Control Flow Refinement and Simulation

Functions

Recfun (here abbreviated to Fun) evaluates to a function value:

s ≻ (Fun (f .x . e)) 7→C s ≺ ⟨⟨f .x . e⟩⟩

Function application is then handled similarly to Plus.

s ≻ (Apply e1 e2) 7→C (Apply □ e2) ▷ s ≻ e1

(Apply □ e2) ▷ s ≺ ⟨⟨f .x . e⟩⟩ 7→C (Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≻ e2

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≺ v 7→C s ≻ e[x := v , f := (Fun (f .x .e))]

We are still using substitution for now.

33



Cost Models Control Flow Refinement and Simulation

Functions

Recfun (here abbreviated to Fun) evaluates to a function value:

s ≻ (Fun (f .x . e)) 7→C s ≺ ⟨⟨f .x . e⟩⟩

Function application is then handled similarly to Plus.

s ≻ (Apply e1 e2) 7→C (Apply □ e2) ▷ s ≻ e1

(Apply □ e2) ▷ s ≺ ⟨⟨f .x . e⟩⟩ 7→C (Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≻ e2

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≺ v 7→C s ≻ e[x := v , f := (Fun (f .x .e))]

We are still using substitution for now.

34



Cost Models Control Flow Refinement and Simulation

What have we done?

All the rules are axioms – we can now implement the evaluator
with a simple while loop (or a tail recursive function).

We have a lower-level specification – helps with code
generation (e.g. in an assembly language)

Substitution is still a machine operation – we need to find a
way to eliminate that.

35



Cost Models Control Flow Refinement and Simulation

Correctness
While the M-Machine is reasonably straightforward definition of
the language’s semantics, the C-Machine is much more detailed.

We wish to prove a theorem that tells us that the C-Machine
behaves analogously to the M-Machine.

Refinement

A low-level (concrete) semantics of a program is a refinement of a
high-level (abstract) semantics if every possible execution in the
low-level semantics has a corresponding execution in the high-level
semantics. In our case:

∀e, v .
◦ ≻ e

⋆7→C ◦ ≺ v

e
⋆7→M v

Functional correctness properties are preserved by refinement, but
security properties are not.

36



Cost Models Control Flow Refinement and Simulation

Correctness
While the M-Machine is reasonably straightforward definition of
the language’s semantics, the C-Machine is much more detailed.

We wish to prove a theorem that tells us that the C-Machine
behaves analogously to the M-Machine.

Refinement

A low-level (concrete) semantics of a program is a refinement of a
high-level (abstract) semantics if every possible execution in the
low-level semantics has a corresponding execution in the high-level
semantics. In our case:

∀e, v .
◦ ≻ e

⋆7→C ◦ ≺ v

e
⋆7→M v

Functional correctness properties are preserved by refinement, but
security properties are not.

37



Cost Models Control Flow Refinement and Simulation

How to Prove Refinement
We can’t get away with simply proving that each C machine step
has a corresponding step in the M-Machine, because the
C-Machine makes multiple steps that are no-ops in the M-Machine:

◦ ≻ (+ (+ (N 2) (N 3)) (N 4)) (+ (+ (N 2) (N 3)) (N 4))

7→C (+ □ (N 4)) ▷ ◦ ≻ (+ (N 2) (N 3))

7→C (+ □ (N 3)) ▷ (+ □ (N 4)) ▷ ◦ ≻ (N 2)

7→C (+ □ (N 3)) ▷ (+ □ (N 4)) ▷ ◦ ≺ 2

7→C (+ 2 □) ▷ (+ □ (N 4)) ▷ ◦ ≻ (N 3)

7→C (+ 2 □) ▷ (+ □ (N 4)) ▷ ◦ ≺ 3

7→C (+ □ (N 4)) ▷ ◦ ≺ 5 7→M (+ (N 5) (N 4))

7→C (+ 5 □) ▷ ◦ ≻ (N 4)

7→C (+ 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9 7→M (N 9)

38



Cost Models Control Flow Refinement and Simulation

How to Prove Refinement

1 Define an abstraction function A : ΣC → ΣM that relates
C-Machine states to M-Machine states, describing how they
“correspond”.

2 Prove, for all initial states σ ∈ IC , that the corresponding
state A(σ) ∈ IM .

3 Prove for each step in the C-Machine σ1 7→C σ2, either:

the step is a no-op in the M-Machine and A(σ1) = A(σ2), or
the step is replicated by the M-Machine A(σ1) 7→M A(σ2).

4 Prove, for all final states σ ∈ FC , that A(σ) ∈ FM .

In general this abstraction function is called a simulation relation
and this type of proof is called a simulation proof.

39



Cost Models Control Flow Refinement and Simulation

The Abstraction Function
Our abstraction function A will need to relate states such that
each transition that corresponds to a no-op in the M-Machine will
move between A-equivalent states:

◦ ≻ (+ (+ (N 2) (N 3)) (N 4)) (+ (+ (N 2) (N 3)) (N 4))

7→C (+ □ (N 4)) ▷ ◦ ≻ (+ (N 2) (N 3))

7→C (+ □ (N 3)) ▷ (+ □ (N 4)) ▷ ◦ ≻ (N 2)

7→C (+ □ (N 3)) ▷ (+ □ (N 4)) ▷ ◦ ≺ 2

7→C (+ 2 □) ▷ (+ □ (N 4)) ▷ ◦ ≻ (N 3)

7→C (+ 2 □) ▷ (+ □ (N 4)) ▷ ◦ ≺ 3

7→C (+ □ (N 4)) ▷ ◦ ≺ 5 7→M (+ (N 5) (N 4))

7→C (+ 5 □) ▷ ◦ ≻ (N 4)

7→C (+ 5 □) ▷ ◦ ≺ 4

7→C ◦ ≺ 9 7→M (N 9)

40



Cost Models Control Flow Refinement and Simulation

Abstraction Function

Given a C-Machine state with a stack and a current expression (or
value), we reconstruct the overall expression to get the
corresponding M-Machine state.

A(◦ ≻ e) = e
A(◦ ≺ v) = (Num v)
A((Plus □ e2) ▷ s ≻ e1) = A(s ≻ (Plus e1 e2))
etc.

By definition, all the initial/final states of the C-Machine are
mapped to initial/final states of the M-Machine. So all that is left
is the requirement for each transition.

41



Cost Models Control Flow Refinement and Simulation

Showing Refinement for Plus

s ≻ (Plus e1 e2) 7→C (Plus □ e2) ▷ s ≻ e1

This is a no-op in the M-Machine:

A(RHS) = A((Plus □ e2) ▷ s ≻ e1)
= A(s ≻ (Plus e1 e2))
= A(LHS)

42



Cost Models Control Flow Refinement and Simulation

Showing Refinement for Plus

s ≻ (Plus e1 e2) 7→C (Plus □ e2) ▷ s ≻ e1

This is a no-op in the M-Machine:

A(RHS) = A((Plus □ e2) ▷ s ≻ e1)
= A(s ≻ (Plus e1 e2))
= A(LHS)

43



Cost Models Control Flow Refinement and Simulation

Showing Refinement for Plus

(Plus □ e2) ▷ s ≺ v1 7→C (Plus v1 □) ▷ s ≻ e2

Another no-op in the M-Machine:

A(LHS) = A((Plus □ e2) ▷ s ≺ v1)
= A(s ≻ (Plus (Num v1) e2))
= A((Plus v1 □) ▷ s ≻ e2)
= A(RHS)

44



Cost Models Control Flow Refinement and Simulation

Showing Refinement for Plus

(Plus □ e2) ▷ s ≺ v1 7→C (Plus v1 □) ▷ s ≻ e2

Another no-op in the M-Machine:

A(LHS) = A((Plus □ e2) ▷ s ≺ v1)
= A(s ≻ (Plus (Num v1) e2))
= A((Plus v1 □) ▷ s ≻ e2)
= A(RHS)

45



Cost Models Control Flow Refinement and Simulation

Showing Refinement for Plus

(Plus v1 □) ▷ s ≺ v2 7→C s ≺ v1 + v2

This corresponds to a M-Machine transition:

A(LHS) = A((Plus v1 □) ▷ s ≺ v2)
= A(s ≻ (Plus (Num v1) (Num v2)))

7→M A(s ≻ (Num (v1 + v2))) (∗)
= A(s ≺ v1 + v2)
= A(RHS)

Technically the reduction step (∗) requires induction on the stack.

46


	Cost Models
	

	Control Flow
	

	Refinement and Simulation
	


